Computational modeling

A Computational Model of the Electrically or Acoustically Evoked Compound Action Potential in Cochlear Implant Users with Residual Hearing

A Computational Model of the Electrically or Acoustically Evoked Compound Action Potential in Cochlear Implant Users with Residual Hearing

A Computational Model of the Electrically or Acoustically Evoked Compound Action Potential in Cochlear Implant Users with Residual Hearing 764 453 IEEE Transactions on Biomedical Engineering (TBME)
We present a computational framework for predicting CAPs in cochlear implant subjects with combined electric-acoustic stimulation, taking into account the interaction in the auditory nerve between the two stimulation modes. read more
Characterization of Induced Current Density During Transcorneal Electrical Stimulation to Promote Neuroprotection in the Degenerating Retina

Characterization of Induced Current Density During Transcorneal Electrical Stimulation to Promote Neuroprotection in the Degenerating Retina

Characterization of Induced Current Density During Transcorneal Electrical Stimulation to Promote Neuroprotection in the Degenerating Retina 789 444 IEEE Transactions on Biomedical Engineering (TBME)
This study optimizes the electrode setup of transcorneal electrical stimulation for targeting the retina and generating the maximum current density, highlighting the input-output relationship of stimulation amplitude vs. retina current density in both rat and porcine eyes. read more
Calibration of the Mechanical Boundary Conditions for a Patient-Specific Thoracic Aorta Model Including the Heart Motion Effect

Calibration of the Mechanical Boundary Conditions for a Patient-Specific Thoracic Aorta Model Including the Heart Motion Effect

Calibration of the Mechanical Boundary Conditions for a Patient-Specific Thoracic Aorta Model Including the Heart Motion Effect 740 416 IEEE Transactions on Biomedical Engineering (TBME)
This study explains how to calibrate the parameters governing the mechanical boundary conditions of a thoracic aorta model with ascending aortic aneurysm integrating 3D and 2D magnetic resonance images. read more

Estimation and validation of cardiac conduction velocity and wavefront reconstruction using epicardial and volumetric data

Author(s)3: Wilson W. Good, Karli K. Gillette, Brian Zenger, Jake A. Bergquist, Lindsay C. Rupp, Jess Tate, Devan Anderson, Matthias A.F. Gsell, Gernot Plank, Rob S. MacLeod
Estimation and validation of cardiac conduction velocity and wavefront reconstruction using epicardial and volumetric data 170 142 IEEE Transactions on Biomedical Engineering (TBME)
Cardiac conduction velocity (CV) is an important electrophysiological property that describes the speed and direction of electrical propagation through the heart. Accurate CV measurements provide a valuable quantitative description of electrical propagation that can help identify diseased tissue substrate and stratify patient risk. In this study we explored a range of techniques for estimating epicardial and volumetric CV and validated the performance of the techniques using whole heart image-based computational modeling. The CV estimation techniques implemented in this study (streamlines, triangulation, inverse-gradient) produce accurate, high-resolution CV fields that can be used to study propagation in the heart experimentally and clinically. read more

Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement with Temporal Convolutional Networks

Author(s)3: Joseph L. Betthauser, John T. Krall, Shain G. Bannowsky, Gyorgy Levay, Rahul R. Kaliki, Matthew S. Fifer, Nitish V. Thakor
Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement with Temporal Convolutional Networks 170 177 IEEE Transactions on Biomedical Engineering (TBME)
Movement prediction from EMG can be performed by compressing a short window of EMG into a feature-encoding that is meaningful for classification— an approach that can cause erratic prediction behavior. Temporal convolutional networks (TCN) leverage temporal information from EMG to achieve superior predictions for 3 simultaneous degrees-of-freedom that are more accurate and stable, have a very low response delay, and allow for novel types of interactive training. Addressing EMG decoding as a sequential prediction problem requires a new set of considerations that will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems. read more