Transactions on
Neural Systems and Rehabilitation Engineering

TNSRE serves the community of biomedical engineers and clinical researchers who work at the intersection of neuroscience and physical medicine. We publish novel approaches and technologies for better understanding neural systems, human movement, and the relationships between them, with a focus on assistive devices that improve life for patients, for practicing clinicians, and for everyday use.
Submit
manuscript

Highlights

3.34
Impact Factor
0.0096
Eigenfactor
0.88
Article Influence Score
Daniel P. Ferris, Ph.D.
Editor-in-chief
Editor-in-chief

Daniel P. Ferris is the Robert W. Adenbaum Professor of Engineering Innovation at the University of Florida J. Crayton Pruitt Family Department of Biomedical Engineering. He studies how to integrate machines and humans to improve human performance and mobility in health and disability. Specific research projects focus on robotic lower limb exoskeletons, bionic lower limb prostheses, and mobile brain imaging with high-density electroencephalography. Prof. Ferris completed his B.S. from the University of Central Florida, his M.S. from the University of Miami, and his Ph.D. from University of California, Berkeley. After earning his doctoral degree, he worked as a post-doctoral researcher in the UCLA Department of Neurology and the University of Washington Department of Electrical Engineering.​ Dr. Ferris spent 16 years at the University of Michigan until recently relocating to the University of Florida in June 2017.​

Daniel P. Ferris is the Robert W. Adenbaum Professor of Engineering Innovation at the University of Florida J. Crayton Pruitt Family Department of Biomedical Engineering. He studies how to integrate machines and humans to improve human performance and mobility in health and disability. Specific research projects focus on robotic lower limb exoskeletons, bionic lower limb prostheses, and mobile brain imaging with high-density electroencephalography. Prof. Ferris completed his B.S. from the University of Central Florida, his M.S. from the University of Miami, and his Ph.D. from University of California, Berkeley. After earning his doctoral degree, he worked as a post-doctoral researcher in the UCLA Department of Neurology and the University of Washington Department of Electrical Engineering.​ Dr. Ferris spent 16 years at the University of Michigan until recently relocating to the University of Florida in June 2017.​

Congratulations to our 2020 TNSRE top reviewers!

 Prof. Jing Jin

East China University of Science and Technology

Dr. Peng Xu 

University of Electronic Science and Technology of China

Dr. Neethu Robinson

School of Computer Science and Engineering, Nanyang Technological University

Dr. Yingchun Zhang

University of Houston Biomedical Engineering

Updates

Transactions on

Neural Systems and Rehabilitation Engineering

NOVEMBER 2020
VOLUME 28
NUMBER 11
ITNSB3
28
The IEEE Transactions on Neural Systems and Rehabilitation Engineering Volume 28 Issue 11 has been published.
Performance Improvement of Near-Infrared Spectroscopy-based Brain-Computer Interfaces Using Transcranial Near-Infrared Photobiomodulation with the Same Device
Transcranial near-infrared photobiomodulation (tNIR-PBM) can modulate physiological characteristics of the human brain, such as the cerebral blood flow and oxidative metabolism. Here, we investigated whether the performance of near-infrared spectroscopy (NIRS)-based brain-computer interfaces (BCIs) can be improved by tNIR-PBM applied to the prefrontal cortex with the same NIRS device... Read more
Non-invasive Ring Electrode with a Wireless Electrical Recording and Stimulating System for Monitoring Preterm Labor
Preterm labor and birth are the primary causes of neonatal morbidities and mortalities. The early detection and treatment of preterm uterine muscular contraction are crucial for the management of preterm labor. In this work, a ring electrode with a wireless electrical recording and stimulating (RE-WERS) system was designed, fabricated, and investigated for the noninvasive monitoring of uterine contraction/relaxation as a diagnostic and therapeutic tool for preterm labor... Read more
Featured Articles
Improved High-density Myoelectric Pattern Recognition Control Against Electrode Shift Using Data Augmentation and Dilated Convolutional Neural NetworkT
The objective of this work is to develop a robust method for myoelectric control towards alleviating the in-terference of electrode shift. Methods: In the proposed method, a preprocessing approach was first performed to convert high-den-sity surface electromyogram (HD-sEMG) signals into a series of images, and the electrode shift appeared as pixel shift in these im-ages... Read more
Featured Articles
Task-space Synergies for Reaching using Upper-limb Prostheses
Synergistic prostheses enable the coordinated movement of the human-prosthetic arm, as required by activities of daily living. This is achieved by coupling the motion of the prosthesis to the human command, such as the residual limb movement in motion-based interfaces... Read more
Featured Articles
Speed adaptable prosthetic foot; concept description, prototyping and initial user testing
This paper presents a novel design of a prosthetic foot that features adaptable stiffness that changes according to the speed of ankle motion. The motivation is the natural graduation in stiffness of a biological ankle over a range of ambulation tasks... Read more
Featured Articles
Deep Learning Architecture to Assist with Steering a Powered Wheelchair
This paper describes a novel Deep Learning architecture to assist with steering a powered wheelchair. A rule-based approach is utilized to train and test a Long Short Term Memory (LSTM) Neural Network. It is the first time a LSTM has been used for steering a powered wheelchair... Read more
Featured Articles
Promoting Functional and Independent Sitting in Children with Cerebral Palsy Using the Robotic Trunk Support Trainer
Seated postural abilities are critical to functional independence and participation in children with cerebral palsy, Gross Motor Functional Classification System (GMFCS) levels III-IV. In this proof-of-concept study, we investigated the feasibility of a motor learning–based seated postural training with a robotic Trunk-Support-Trainer (TruST) in a longitudinal single-subject-design (13y, GMFCS IV), and its potential effectiveness in a group of 3 children (6-14y, GMFCS III-IV)... Read more