Transactions on
NanoBioscience

The IEEE Transactions on NanoBioscience publishes basic and applied papers dealing both with engineering, physics, chemistry, modeling and computer science and with biology and medicine with respect to molecules, cells, tissues. The content of acceptable papers ranges from practical/clinical/environmental applications to formalized mathematical theory.
Submit
manuscript

Highlights

2.935
Impact Factor
0.0027
Eigenfactor
0.599
Article Influence Score
Dan V. Nicolau
Editor-in-chief
Editor-in-chief

Dan has degrees in Chemical Engineering (PhD, MEng) and in Statistics, Cybernetics & Information Technology (MSc). His research covers biocomputation and biosimulation, nanodevices powered by protein molecular motors, surface science and engineering, micro- and nano-fabrication for semiconductor and biomedical devices, process modelling and control, and protein adsorption. Dan is a Professor of Bioengineering with McGill University, the Maria Zelenka-Roy Chair in Bioengineering, and the founding Chair of McGill’s Department of Bioengineering in the Faculty of Engineering. Dan authored more than 200 peer-reviewed publications, co-edited a book, and chaired more than 30 international conferences. He has been the Editor-in-Chief of the IEEE Transactions on NanoBioscience since January 1, 2020.

Email: dan.nicolau@mcgill.ca

Dan has degrees in Chemical Engineering (PhD, MEng) and in Statistics, Cybernetics & Information Technology (MSc). His research covers biocomputation and biosimulation, nanodevices powered by protein molecular motors, surface science and engineering, micro- and nano-fabrication for semiconductor and biomedical devices, process modelling and control, and protein adsorption. Dan is a Professor of Bioengineering with McGill University, the Maria Zelenka-Roy Chair in Bioengineering, and the founding Chair of McGill’s Department of Bioengineering in the Faculty of Engineering. Dan authored more than 200 peer-reviewed publications, co-edited a book, and chaired more than 30 international conferences. He has been the Editor-in-Chief of the IEEE Transactions on NanoBioscience since January 1, 2020.

Email: dan.nicolau@mcgill.ca

Quantum Speedup and Mathematical Solutions from Implementing Bio-molecular Solutions for the Independent Set Problem on IBM’s Quantum Computers

In this paper, we propose a bio-molecular algorithm with O(n2 + m) biological operations, O(2n) DNA strands, O(n) tubes and the longest DNA strand, O(n), for solving the independent-set problem for any graph G with m edges and n vertices. Next, we show that a new kind of the straightforward Boolean circuit yielded from the bio-molecular solutions with m NAND gates, (m + n × (n +1)) AND gates and ((n × (n + 1)) / 2) NOT gates can find the maximal independent-set(s) to the independent-set problem for any graph G with m edges and n vertices. We show that a new kind of the proposed quantum-molecular algorithm can find the maximal independent set(s) with the lower bound O(2n/2) queries and the upper bound Ω(2n/2) queries. This work offers an obvious evidence that to solve the independent-set problem in... Read more

In this paper, we propose a bio-molecular algorithm with O(n2 + m) biological operations, O(2n) DNA strands, O(n) tubes and the longest DNA strand, O(n), for solving the independent-set problem for any graph G with m edges and n vertices. Next, we show that a new kind of the straightforward Boolean circuit yielded from the bio-molecular solutions with m NAND gates, (m + n × (n +1)) AND gates and ((n × (n + 1)) / 2) NOT gates can find the maximal independent-set(s) to the independent-set problem for any graph G with m edges and n vertices. We show that a new kind of the proposed quantum-molecular algorithm can find the maximal independent set(s) with the lower bound O(2n/2) queries and the upper bound Ω(2n/2) queries. This work offers an obvious evidence that to solve the independent-set problem in any graph G with m edges and n vertices, bio-molecular computers are able to generate a new kind of the straightforward Boolean circuit such that by means of implementing it quantum computers can give a quadratic speed-up. This work also offers one obvious evidence that quantum computers can significantly accelerate the speed and enhance the scalability of bio-molecular computers. Furthermore, to justify the feasibility of the proposed quantum-molecular algorithm, we successfully solve a typical independent set problem for a graph G with three vertices and two edges by carrying out experiments on the backend ibmqx4 with five quantum bits and the backend simulator with 32 quantum bits on IBM’s quantum computer.

Read less
Dr. Uche Chude-Okonkwo
IEEE TNB top reviewer for 2020
IEEE TNB top reviewer for 2020

Updates

Transactions on

NanoBioscience

April 2021
VOLUME 20
NUMBER 2
ITMCEL
20
The IEEE Transactions on NanoBioscience Volume 20 Issue 2 has been published.
Multi-Analyte Detection Based on Integrated Internal and External Sensing Approach
Highly sensitive, simple and multiplex detection capabilities are key criteria of point-of-care (POC) diagnosis in clinical samples. Here, a simple and highly sensitive multi-analyte detection technique is proposed by using photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor... Read more
A High-voltage TENG-based Droplet Energy Generator with Ultralow Liquid Consumption
A solid-liquid triboelectric nanogenerator (TENG) has attracted increasing research interest in relation to the development of regeneration energy based on water resources. The output of solid-liquid TENG remains unsolved, however, because of the low voltage output that impedes wide applications.... Read more
Articles
Space-Dividing-Based Cluster Synchronization of Reaction-Diffusion Genetic Regulatory Networks via Intermittent Control
In this paper, we focus on the cluster synchronization of reaction-diffusion genetic regulatory networks (RDGRNs) with time-varying delays, where the state of the system is not only time-dependent but also spatially-dependent due to the presence of the reaction-diffusion terms. First,... Read more
Articles
Solving the Family Traveling Salesperson Problem in the Adleman-Lipton model based on DNA computing
The Family Traveling Salesperson Problem (FTSP) is a variant of the Traveling Salesperson Problem (TSP), in which all vertices are divided into several different families, and the goal of the problem is to find a loop that concatenates a specified... Read more
Articles
Synthesis of α,β-unsaturated benzotriazolyl-1,3,4-oxadiazole derivatives: anticancer activity, cytotoxicity, and cell imaging
A series of ten α,β-unsaturated benzotriazolyl-1,3,4-oxadiazole derivatives was synthesized and all compounds were evaluated in vitro against three breast cancer cell lines (MCF-7, MDA-MB-231 and 4T1) at different concentrations (0.1, 0.5, 1, 2, 3, 4 and 5 mg/mL). The results... Read more
Articles
Adaptive Parameter Model for Quasi-Spherical Cell Size Measurement Based on Lensless Imaging System
Many biological cells appear quasi-spherical, such as red blood cells, white blood cells, egg cells, cancer cells, etc. Cell size is an important basis for medical diagnosis. The traditional method is to use a microscope or flow cytometer to obtain... Read more