Stomach 3D Reconstruction Using Virtual Chromoendoscopic Images

Stomach 3D Reconstruction Using Virtual Chromoendoscopic Images 150 150 IEEE Journal of Translational Engineering in Health and Medicine (JTEHM)

Objective. Gastric endoscopy is a golden standard in the clinical process that enables medical practitioners to diagnose various lesions inside a patient’s stomach. If a lesion is found, a success in identifying the location of the found lesion relative to the global view of the stomach will lead to better decision making for the next clinical treatment. Our previous research showed that the lesion localization could be achieved by reconstructing the whole stomach shape from chromoendoscopic indigo carmine (IC) dye-sprayed images using a structure-from-motion (SfM) pipeline. However, spraying the IC dye to the whole stomach requires additional time, which is not desirable for both patients and practitioners. Our objective is to propose an alternative way to achieve whole stomach 3D reconstruction without the need of the IC dye. Methods and results. We generate virtual IC-sprayed (VIC) images based on image-to-image style translation trained on unpaired real no-IC and IC-sprayed images, where we have investigated the effect of input and output color channel selection for generating the VIC images. We validate our reconstruction results by comparing them with the results using real IC-sprayed images and confirm that the obtained stomach 3D structures are comparable to each others. We also propose a local reconstruction technique to obtain a more detailed surface and texture around an interesting region. Conclusions. The proposed method achieves the whole stomach reconstruction without the need of real IC dye using SfM. We have found that translating no-IC green-channel images to IC-sprayed red-channel images gives the best SfM reconstruction result. Clinical impact We offer a method of the frame localization and local 3D reconstruction of a found gastric lesion using standard endoscopy images, leading to better clinical decision.