Neuro-Feedback Systems: An Short Overview

LUIGI BIANCHI, PH. D. 'TOR VERGATA' UNIVERSITY OF ROME, ITALY EMAIL: LUIGI.BIANCHI@UNIROMA2.IT LUIGI.BIANCHI@IEEE.ORG

Neuro-feedback

- Neuro-feedback is a type of biofeedback that uses real-time displays of brain activity—most commonly electroencephalography (EEG), to teach self-regulation of brain function.
- Neuro-feedback could support clinicians and therapists in the rehabilitation process of people affected by a wide range of neurological disorders and pathologies such as ADHD, epilepsy, schizophrenia and stroke.

2

Neuro-feedback

- Real-time feedback from brain activity
- Reinforce brain function

Typical elements

- EEG device to acquire brain signals
- Feedback presented using video or audio

Neurofeedback Applications

- Therapy
 - ADHD
 - Depressive and anxiety disorders
 - Stroke
 - Traumatic brain injury
 - Epilepsy
 - PTSD

•

Performance enhancement

NFB: An example Mu-rhythm

Fig. 2. Data from a patient trained to self-regulate sensorimotor rhythm. He received feedback from CP4 (arrow in B) in the frequency range of 9–12 Hz. (A) Power spectrum. The voltage is plotted as a function of frequency. The solid line shows the power spectrum during relaxation and related upward cursor movement; the dashed line during imagined left-hand movement and related downward cursor movement. A voltage difference can be clearly seen in the 9–12 Hz frequency band (mu-rhythm) and also — albeit smaller — in the beta band around 18–22 Hz. (B) The topography of the determination coefficient (r^2), is the proportion of the total variance of the sensorimotor-rhythm amplitude that is accounted for by target position. The r^2 is highest (dark grey) under the feedback electrode.

Conversion of EEG Activity Into Cursor Movement

Fig. 2. Spatial filter improves signal-to noise ratio of the signal \underline{u}_t of the 64 electrodes using a weight matrix W as parameter. Spectral analysis is performed on a selection \underline{q} of the spatially filtered signals \underline{a}_t . Thereby, \underline{w} selects the frequency bands. With the weights \underline{r} these m spectrally analyzed signals \underline{b}_{τ} are linearly combined. The resulting scalar c_{τ} is normalized (x_{τ}) and then mapped to a cursor position ν_{τ} using the scalar G as an input. Finally, this cursor position is represented in the context of a task (e.g., three boxes, highlighted target) on the screen (y_{τ}) .

Georg E. Fabiani, Dennis J. McFarland, Jonathan R. Wolpaw, and Gert Pfurtscheller, Member, IEEE

Speedy'O'Brain System

8

Speedy'O'Brain – Racing Mode

9

Scalp (EEG)
Cortical surface
Intracortical
fMRI
NIRS
Scalp (MEG)

IEEE P2731 - Data Storage

