Neuro-Feedback Systems: An Short Overview

LUIGI BIANCHI, PH. D.
‘TOR VERGATA’ UNIVERSITY OF ROME, ITALY
EMAIL: LUIGI.BIANCHI@UNIROMA2.IT
LUIGI.BIANCHI@IEEE.ORG
Neuro-feedback is a type of biofeedback that uses real-time displays of brain activity—most commonly electroencephalography (EEG), to teach self-regulation of brain function.

Neuro-feedback could support clinicians and therapists in the rehabilitation process of people affected by a wide range of neurological disorders and pathologies such as ADHD, epilepsy, schizophrenia and stroke.
Neuro-feedback

- Real-time feedback from brain activity
- Reinforce brain function
Typical elements

- EEG device to acquire brain signals
- Feedback presented using video or audio
Neurofeedback Applications

- Therapy
 - ADHD
 - Depressive and anxiety disorders
 - Stroke
 - Traumatic brain injury
 - Epilepsy
 - PTSD
 -

- Performance enhancement
Fig. 2. Data from a patient trained to self-regulate sensorimotor rhythm. He received feedback from CP4 (arrow in B) in the frequency range of 9–12 Hz. (A) Power spectrum. The voltage is plotted as a function of frequency. The solid line shows the power spectrum during relaxation and related upward cursor movement; the dashed line during imagined left-hand movement and related downward cursor movement. A voltage difference can be clearly seen in the 9–12 Hz frequency band (mu-rhythm) and also — albeit smaller — in the beta band around 18–22 Hz. (B) The topography of the determination coefficient (r^2), is the proportion of the total variance of the sensorimotor-rhythm amplitude that is accounted for by target position. The r^2 is highest (dark grey) under the feedback electrode.
Conversion of EEG Activity Into Cursor Movement

Fig. 2. Spatial filter improves signal-to-noise ratio of the signal u_t of the 64 electrodes using a weight matrix W as parameter. Spectral analysis is performed on a selection q of the spatially filtered signals u_t. Thereby, w selects the frequency bands. With the weights r these m spectrally analyzed signals b_t are linearly combined. The resulting scalar c_{τ} is normalized (x_{τ}) and then mapped to a cursor position ν_{τ} using the scalar G as an input. Finally, this cursor position is represented in the context of a task (e.g., three boxes, highlighted target) on the screen (y_{τ}).

Georg E. Fabiani, Dennis J. McFarland, Jonathan R. Wolpaw, and Gert Pfurtscheller, Member, IEEE
Speedy’O’Brain System

IP 192.168.0.1

IP 192.168.0.2

Mental Task
Compito Mentale
Speedy’O’Brain – Racing Mode

Mental Task

Compito Mentale

G: 1.000

Delta: 0.12 (0.65)

Delta: -0.12 (0.65)

Delta: 0.28 (0.65)

Delta: 0.20 (0.65)

Calibrated

R: 0/20
Signal Acquisition

- Scalp (EEG)
- Cortical surface
- Intracortical
- fMRI
- NIRS
- Scalp (MEG)
IEEE P2731 - Data Storage

Level 0: Brain Signals Acquisition
- Acquisition Devices
- Transducer
- Signal Acquisition and Preparation
- Preparation
 - Brain
 - EEG
 - fMRI
 - ECoG
 - PET
 - MEG
 - PN/RS
 - Others
 - EOG
 - GSR
- Data Transfer
- Offline
- Online

Level 1: BCI training
- Complementary Stages
 - (Simulated Signals, Transfer Learning, etc.)
 - Pre-processing
 - Artifact removal
 - Space and time domain filtering
 - Others
- Feature extraction
- Classifier
- Regressor
- Adjust/tune transducer
- Previous stored experience
- Online
- Offline

Level 2: Feedback
- User
 - Psychology
 - Motivation, depression, skill, stress, frustration, etc.
 - Physiology
 - P300 amplitude and latency, SSxEP freq, μ-rhythm, etc.
- Voluntary Muscles (eye gaze, arms, legs, etc.)
- Involuntary Muscles (Heart)
- Previous user experience
- Online only
- Offline only
- Online & Offline

CONTROL INTERFACE
- Encoder
 - Map of sequences of Logical symbols into Semantic Symbols
 - Logical Alphabet
 - Semantic Alphabet
 - Type a character
 - Open the door
 - Wheelchair drive
 - Phone dial
 - Select

Protocol Paradigm
- Trial Handling
- Stimuli generation
- Timing clock
- Feedback/Stimulation
- Application
 - Display
 - Communication
 - Control