

IEEE 1708 Cuffless Blood Pressure Standard

Y.T. Zhang

Outline

Introduction

Review on current standards

Error distribution model

- Data analysis
- Validation protocol design

summary

AHA/ASH/PCNA Scientific Statement

Call to Action on Use and Reimbursement for Home Blood Pressure Monitoring: Executive Summary [1]

In 2008, the American Heart Association (AHA), American Society of Hypertension (ASH), and Preventive Cardiovascular Nurses Association (PCNA) published a joint scientific statement that recommended :

Home Blood Pressure Measurement (HBPM) should become a routine component of BP measurement in the majority of patients with known or suspected hypertension.

IEEE STANDARDS ASSOCIATION

[1]T. G. Pickering, et al. Hypertension, 2008.

Cuffless Blood Pressure Measurements Advantages

- Real-time
- Continuous
- Non-invasive BP
- Miniature in size
- Low power consumption

Problem: Are they accurate?

Needs for A New Standard

A standard on <u>evaluation</u> of cuff-less devices is needed,

- For device developers to qualify and validate their products;
- For potential purchasers to select prospective products;
- For health care professionals to understand the manufacturing practices on wearable cuff-less BP devices.

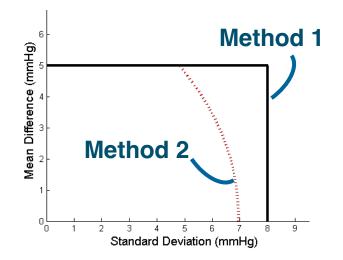
In 2014, "IEEE Standard for Wearable, Cuffless Blood Pressure Measuring Devices" (IEEE 1708) has been published.

Validation protocol

Statistical analysis

Wearable sensors/communications

Objectives

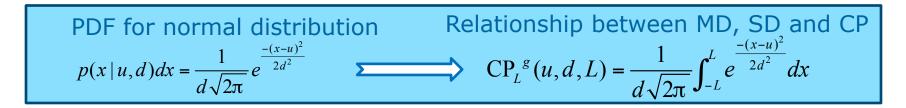

■ In this session, we will focus on the following aspects:

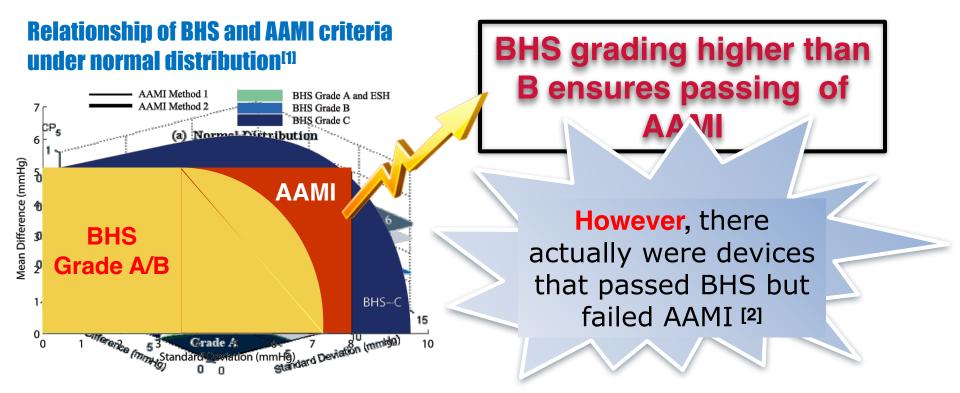
- Error distribution model of various BP measuring devices;
- Evaluation parameters for assessing the accuracy of cuff-less devices; and
- Validation protocol design that meets the special features of cuff-less devices.

Standard by American Association for the AAMI Advancement of Medical Instrumentation

- **Publication Time:** first published in 1986, revised twice in 1993, 2003.
- **Subject:** at least **85**, each of them contributes **3** measurements
- Data Analysis:
 - Accuracy Measurement: Statistical mean difference (MD) and standard deviation of differences (SD) between the measurements obtained by a test device and the reference
 - Accuracy Criteria:
 - Method 1: MD and SD of all measurement differences (N = 255) be within ± 5 mmHg and 8 mmHg respectively.
 - Method 2: averages the 3 readings of each subject and reduces the allowable value of the SD as the MD increased.

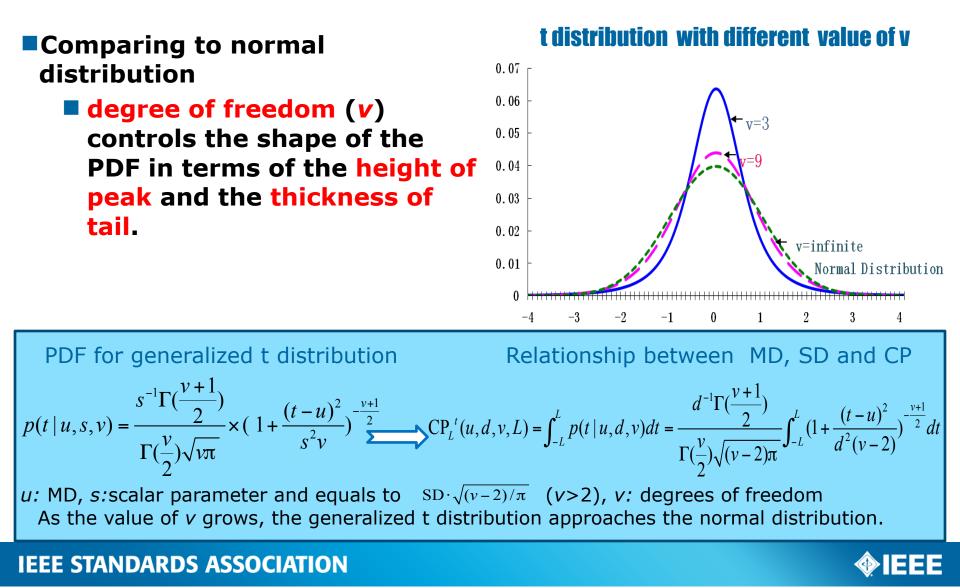
Protocol by British Hypertension Society


- **Publication Time:** first established in 1990, revised in 1993
- **Subject:** at least **85**, each of them contributes **3** measurements
- Data Analysis:
 - Accuracy Measurement: percentages of measurement difference lying within 5, 10 and 15mmHg (CP_{5,10,15}).
 - Accuracy Criteria: device is graded into A, B, C or D if it meets all the requirements on the CP 5.10.15.

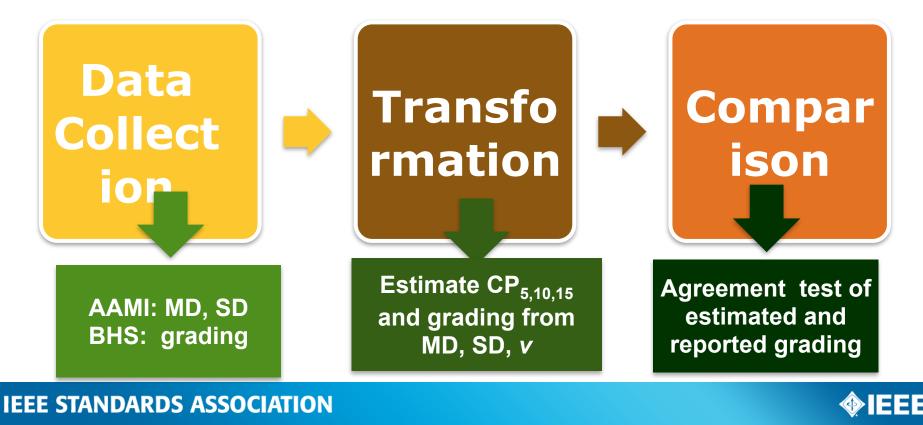

British Hypertension Society Grading Criteria (2002)						
Grade	Absolute difference between standard and test device (mmHg)					
Graue	≤5	≤10	≤15			
Cumulative percentage of readings (%)						
Α	60	85	95			
В	50	75	90			
С	40	65	85			
D	Worse than C					

Problem Description

Accuracy Discrepency under Normal Distribution

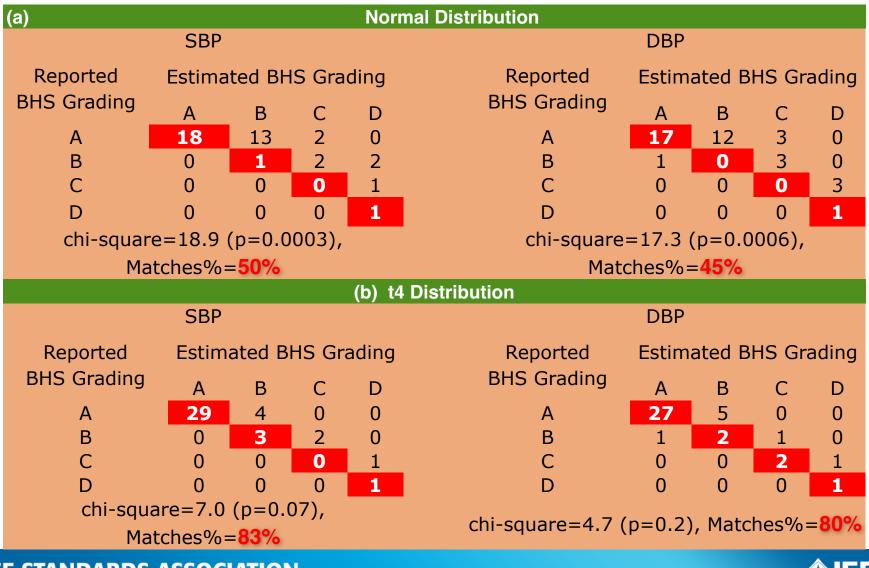


Normal model may not be a good approximation.


[1] M. Sun and R. Jones, Biomed Instrum Technol, 1999. [2] X.Y. Xiang et al. 3rd IEEE-EMBS, 2006

Generalized t Distribution

Analysis on Cuff-based Devices Methodology


Comprehensive search in the Medline database for literatures published during 1991 to 2008 on the evaluation of BP devices by the BHS protocol and the AAMI standard.^[1]

[1] R.F. Yan et al. Blood Press Monit, 2009

Analysis on Cuff-based Devices

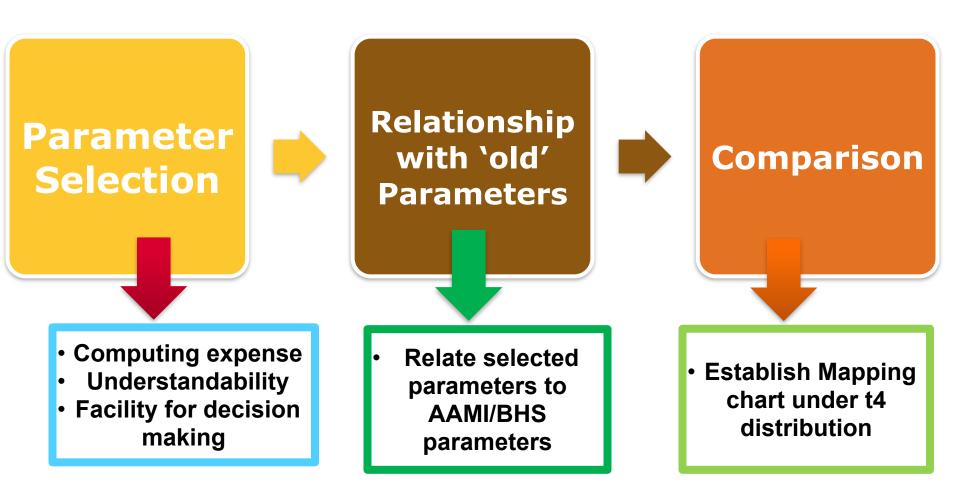
Estimation Results under Normal and t4 Distribution

Analysis on Wearable Cuff-less Device Methodology

85 subjects, aged 57±29yrs, 36 males, 39 with hypertension, **999** pairs of readings. ^[1]

Data Analysis:

- Estimate BHS grading from MD and SD under normal or t4 distribution, and test the accordance with the reported grading.
- Fitting the distribution of measuring differences to normal and t4 distribution.
- Assess the goodness-of-fit to by Kolmogorov-Smirnov (KS) test.


IEEE STANDARDS ASSOCIATION

[1] C. C. Poon et al. 27th EMBS, 2005.

Parameter Selection

Methodology

IEEE STANDARDS ASSOCIATION

[1] R.F. Yan et al. Blood Press Monit, 2009

Selected Parameters

Definition & Relationship under t4 Distribution

Parameter Definition

Relationship with MD & SD

Mean Absolute Difference (MAD)

$$MAD = \left(\sum_{i=1}^{n} \left| p_i - y_i \right| \right) n$$

$$AAD = 2s\sqrt{\frac{\nu}{\pi}} \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})(\nu-1)} (1 + \frac{u^2}{s^2\nu})^{-\frac{\nu-1}{2}} + \frac{u^2}{r^2} + \frac{u^2}{r^2}$$

$$|u| \cdot (1 - I(\frac{v}{v + (\frac{u}{s})^2}; \frac{v}{2}, \frac{1}{2})$$

Root Mean Square Difference (RMSD)

$$RMSD = \sqrt{\left(\sum_{i=1}^{n} (p_i - y_i)^2\right) n}$$

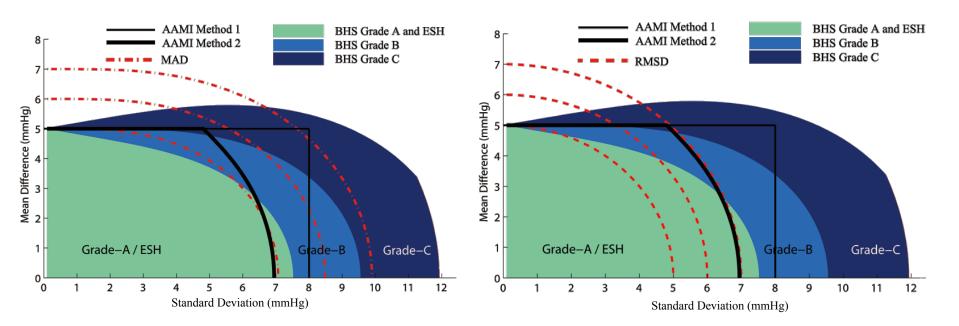
$$RMSD = u^2 + d^2$$

NA

Mean Absolute Percentage Difference (MAPD)

MAPD =
$$\left(\sum_{i=1}^{n} |100(p_i - y_i) / y_i| \right) n$$

* p_i is the measured value, y_i is the reference value and n is the data size, u is MD, d is SD, v is degree of freedom of t distribution


IEEE STANDARDS ASSOCIATION

Parameters Selection

Relationship between 'New' and 'Old' Parameters

(a) MAD

(b) RMSD

(a) MAD and (b) RMSD as a function of MD and SD under t4 distribution. The red lines are MAD or RMSD with values equal to 5, 6 and 7 mmHg from inter to outer.

IEEE STANDARDS ASSOCIATION

[1] R.F. Yan et al. Blood Press Monit, 2009

Discussion

Accuracy Criteria

MAD accuracy level with comparison to the AAMI and BHS evaluation systems.						
MAD (mmHg)	Method 1 of AAMI	BHS				
≤4	pass	Grade A				
4-5	nacc	mostly Grade A,				
4-5	pass	few Grade B				
5-6	pass or fail	mostly Grade B, few Grade A, extremely few Grade C/D				
6-7	mostly fail, less pass	mostly Grade C, few Grade B/D				
≥7	fail	worse than Grade C				

Cuffless BP device Subject Dependent Calibration

- Cuff-less devices should be calibrated individually.
- Cuff-less devices should be calibrated frequently.
- Effective calibration should be done before and after a period time of use, with wide enough range of BP change.
- When devices claim to provide continuous measurement in the daily life, 24-h device assessment is necessary.

Accuracy after a certain period of time Cuff-based Device, Study 1

Device accuracy report for systolic blood pressure measurement (Study 1, N=999, Cuff-based Device)								
BP Change (mmHg)	MAD (mmHg)	MAPD (%)	MD (mmHg)	SD (mmHg)	CP₅ (%)	CP ₁₀ (%)	CP ₁₅ (%)	Grading
Overall (N=999	€)							
7.7	5.8	4.7	-2.8	7.2	56.7	86.1	95.6	В
Accuracy for di	fferent trial	s						
Trial 1 (N=255)							
3.9	5.6	4.5	-2.6	6.7	58.8	87.1	95.3	В
Trial 2 (N=255)							
9.3	5.8	4.6	-2.9	6.6	54.1	86.3	95.3	В
Trial 3 (N=255)							
8.4	5.8	4.8	-3.2	6.8	58.8	84.7	95.7	В
Trial 4 (N=234)								
9.3	5.9	4.8	-2.5	7.0	55.1	86.8	96.6	В

Accuracy after a certain period of time

Cuff-based Device, Study2

Device accuracy report for systolic blood pressure measurement (Study 2, N=139, Cuff-less Device)									
BP Changes	MAD	MAPD	MD	SD	CP ₅	CP ₁₀	CP ₁₅		
(mmHg)	(mmHg)	(%)	(mmHg)	(mmHg)	(%)	(%)	(%)		
Overall (N=13	Overall (N=139)								
12.6	6.8	5.7	-2.3	9.0	49.6	74.8	88.5		
Before or after exercise									
Before Exercise (N=56)									
2.1	2.9	2.8	0.5	3.9	82.1	98.2	100.0		
After Exercise (N=83)									
19.7	9.4	7.6	-4.2	10.8	27.7	59.0	80.7		

Discussion

- Since the cuff-less devices require a calibration procedure, evaluation shall be with a wide range of BP change from the calibration point.
- Evaluating the performance of cuff-less devices concerning the change of BP from calibration point is crucial for interpreting the overall accuracy.
- The protocol may also need to cover a wide enough range of time, in order to assess whether the calibration of the device ages as well as it has claimed.

Accuracy Assessment with BP Change

Inducement of Blood Pressure Change

Assuming that 45 subjects are recruited to contribute a total of 135 datasets, the number of datasets that is required for each range is also included in the table.

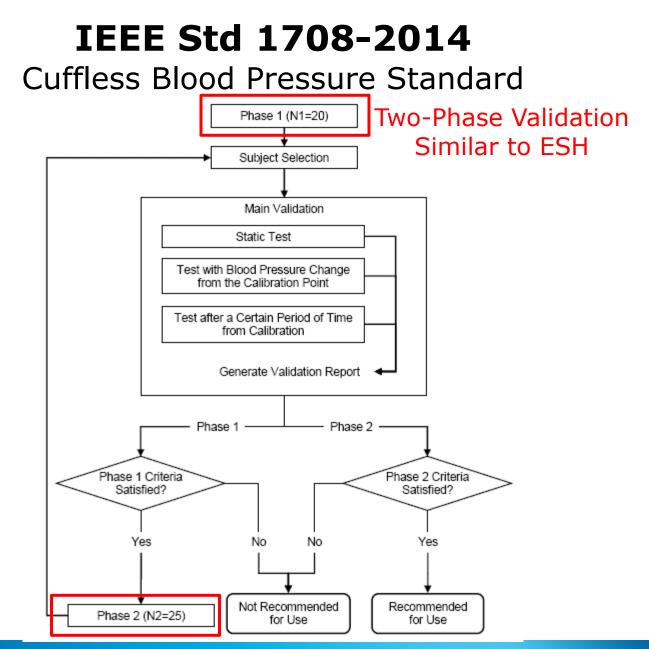
Inducement of blood pressure changes ^a							
	Changes of BF	• from the Poin	t of Calibratior	(mmHg)			
SBP	-3015	-15 – 0	0 - 15	15 - 30			
DBP	-2010	-10 - 0	0 - 10	10 - 20			
Required Samples	13.6% (18)	34.1% (42)	34.1% (42)	13.6% (18)			
^a Blood Pressure change refers to the reference reading measured by the observers							

minus the value at the calibration point.

IEEE Std 1708-2014 Cuffless Blood Pressure Standard

Observer training and measurement: 2 observers are trained in accurate BP measurement.

Subject selection: 20 subjects are recruited at Phase 1 of the assessment and an additional 25 subjects are recruited at Phase 2.


Main validation:

- static test,
- test with BP change from the calibration point, and
- test after a certain period of time from calibration.

Data analysis: the collected data are analyzed and compared to the stated accuracy criteria.

Data reporting: The results are presented in recommended format.

IEEE STANDARDS ASSOCIATION

IEEE STANDARDS ASSOCIATION

Thank You!

IEEE 445 Hoes Lane Piscataway, NJ 08854 T: 732-562-3800

standards.ieee.org