

Five current challenges for BCI standards

Rupert Ortner, g.tec medical engineering

Research projects

H2020 SME project: recoveriX - motor recovery after stroke

H2020 SME project: ComaWare – coma assessment and communication

H2020 Eurostars project: ComAlert – coma prediction

H2020 Eurostars project: RapidsMaps – high gamma mapping

EC project: Neurographene – development of Graphene electrodes

EC project: ReNaChip - Rehabilitation of a discrete sensory motor learning function

EC project: Sm4all – Smart Home for all

EC project: RGS – Rehabilitation Gaming System faster recovery from stroke

EC project: BrainAble - BCI with VR and social networks

EC project: Decoder - BCI for locked in patients

EC project: CSI - Central Nervous System Imaging

EC project: BETTER BCI for Stroke rehabilitation and rehabilitation robots

EC project: VERE – Virtual Embodiment Real Embodiment

EC project: ALIAS – Adaptable Ambient Living Assistant

EC project: BACKHOME – BCIs for end users

EC project: DENECOR

EC project: High Profile

mind **BEAGLE**

A BCI Lab

Challenge 1: Different sensors

- Non-invasive versus invasive (different regulations, FDA, CE)
- Depth electrodes, grids versus EEG electrodes
- Active or passive electrodes
- Gel or dry EEG electrodes
- Different number of channels (P300: 8, SSVEP: 8, motor imagery: 64, invasive mapping: 256)
- Different sampling frequency (Spikes: 40 kHz, ECoG: 1-4 kHz, EEG: 256 Hz)
- Different platforms (Windows, Linux, Android,...)

How to interface an amplifier

- g.NEEDaccess service to interface all amplifiers with one common interface
- A. C++ Application Program Interface (API)
 - integrate amplifiers into own software under Windows and Linux
- B. MATLAB API
 - integrate amplifiers into MATLAB data acqui
 - access all toolboxes (Signal Processing, Neur
 - access user written M-files
- C. Simulink Highspeed on-line Processing
 - amplifier device driver block under Simulink
 - copy the block into Simulink model and conr
 - (S-functions) and paradigm blocks (MATLAB
 - just exchange the amplifier device driver and processing blocks
- D. LabView
 - amplifier device driver block under LabView
 - use standard LabView blocks for analysis
- All options provide full access to hardware
 - bandpass, notch settings
 - sampling frequency
 - impedance check
 - synchronization with digital inputs for synchronization
 - direct integration of other devices

Challenge 2: Event Timing

Real-time data stream synced with external devices visual P300: 1 ms resolution

vibro-tactile P300: 1 ms resolution

••••

Control of external devices
UDP
digital outputs

Embodiment station

<u>cortiQ - Clinical software for electrocorticographic real-time functional mapping of the eloquent cortex.</u>

Prueckl R, Kapeller C, Potes C, Korostenskaja M, Schalk G, Lee KH, Guger C. Conf Proc IEEE Eng Med Biol Soc. 2013 Jul;2013:6365-8. doi: 10.1109/EMBC.2013.6611010.

Rapid cortical mapping

Challenge 3: Many controllable elements

- Smart home needs many controls for domotic devices
- BCI has to understand which controls are necessary
- BCI must be updated to changes of the environment

ACTOR protocol

- The BCI speaks with ACTOR protocol with the avatars and robotic systems
- XML files are loaded at startup (from disk or from a text string, which is received over the network)
- Updates of the XML files can be received at runtime over UDP: Modify the contents of the BCI at runtime, e.g. to achieve context awareness

Challenge 4: Avatar/robot control

- The person is seeing the environment through the avatar or robotic system
- We need BCI controls for controlling the avatar/robot
- The BCI system has to send control command to external system
- Interfacing with rehabilitation devices

Screen overlay control interface - SOCI

Challenge 5: Performance standards

	Motor imagery N=5 [Irimia 2016]	cVEP N=18 [Kapeller]	P300 speller [Guger 2016]
Grand average accuracy	87 %	98 %	100 %
Training time	30 min	5 min	5 min
Number of electrodes	32	8	8
Random classification accuracy	1/2	1/4	1/36
Decision time for selection	6 sec	3 sec	About 45 sec with 15 flashes
Location	Motor cortex	Visual cortex	Central line and visual cortex

