Fugl-Meyer assessment is an accepted method of evaluating motor function for people with stroke. A challenge associated with this assessment is the availability of trained examiners to carry out the evaluation. Neurophysiological biomarkers show promise in addressing the above impediment. Our study investigated the potential of using resting state electroencephalographic (EEG) functional connectivity measures as biomarkers for estimating Fugl-Meyer upper extremity motor score (FMU) in people with chronic stroke. Resting state EEG was recorded from 10 individuals with stroke. Functional connectivity was evaluated through five different processing algorithms and quantified in terms of maximum-coherence between EEG electrodes at 15 frequencies from 1 to 45 Hz. We applied a multi-variate Partial Least Squares (PLS) Correlation analysis to simultaneously identify specific connectivity channels (EEG electrode pairings) and frequencies that robustly correlated with FMU. We then applied PLS-Regression to the identified channels and frequencies to generate a set of coefficients for estimating the FMU. Participants were randomly assigned to a training-set of eight and a test-set of two. Cross-validation with leave-one-out approach on the training-set, using Phase-Lag-Index processing algorithm, resulted in an R 2 of 0.97 and a least-square linear fit slope of 1 for predicted versus actual FMU, with a root-mean-square error of 1.9 on FMU scale. Application of regression coefficients to the connectivity measures from the test-set resulted in predicted FMU of 47 and 38 versus actual scores of 46 and 39, respectively. Our results demonstrated that the evaluation of neural correlates of FMU shows promise in addressing the challenges associated with the availability of trained examiners to carry out the assessments.