TNB presents

Robust and Efficient Biomolecular Clustering of Tumor Based on p -Norm Singular Value Decomposition

Featured Articles

High dimensionality has become a typical feature of biomolecular data. In this paper, a novel dimension reduction method named p-norm singular value decomposition (PSVD) is proposed to seek the low-rank approximation matrix to the biomolecular data. To enhance the robustness to outliers, the Lp-norm is taken as the error function and the Schatten p-norm is used as the regularization function in the optimization model. To evaluate the performance of PSVD, the Kmeans clustering method is then employed for tumor clustering based on the low-rank approximation matrix. Extensive experiments are carried out on five gene expression data sets including two benchmark data sets and three higher dimensional data sets from the cancer genome atlas. The experimental results demonstrate that the PSVD-based method outperforms many existing methods. Especially, it is experimentally proved that the proposed method is more efficient for processing higher dimensional data with good robustness, stability, and superior time performance.

Related Articles