TNB presents

A New Adaptive Gamma Correction Based Algorithm Using DWT-SVD for Non-Contrast CT Image Enhancement

Featured Articles

The performances of medical image processing techniques, in particular CT scans, are usually affected by poor contrast quality introduced by some medical imaging devices. This suggests the use of contrast enhancement methods as a solution to adjust the intensity distribution of the dark image. In this paper, an advanced adaptive and simple algorithm for dark medical image enhancement is proposed. This approach is principally based on adaptive gamma correction using discrete wavelet transform with singular-value decomposition (DWT-SVD). In a first step, the technique decomposes the input medical image into four frequency sub-bands by using DWT and then estimates the singular-value matrix of the low–low (LL) sub-band image. In a second step, an enhanced LL component is generated using an adequate correction factor and inverse singular value decomposition (SVD). In a third step, for an additional improvement of LL component, obtained LL sub-band image from SVD enhancement stage is classified into two main classes (low contrast and moderate contrast classes) based on their statistical information and therefore processed using an adaptive dynamic gamma correction function. In fact, an adaptive gamma correction factor is calculated for each image according to its class. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed low–high (LH), high–low (HL), and high–high (HH) sub-bands for enhanced image generation. Different types of non-contrast CT medical images are considered for performance evaluation of the proposed contrast enhancement algorithm based on adaptive gamma correction using DWT-SVD (DWT-SVD-AGC). Results show that our proposed algorithm performs better than other state-of-the-art techniques.

Related Articles