TMI presents

Connectivity in fMRI: Blind Spots and Breakthroughs

Featured Articles

In recent years, driven by scientific and clinical concerns, there has been an increased interest in the analysis of functional brain networks. The goal of these analyses is to better understand how brain regions interact, how this depends upon experimental conditions and behavioral measures and how anomalies (disease) can be recognized. In this paper, we provide, first, a brief review of some of the main existing methods of functional brain network analysis. But rather than compare them, as a traditional review would do, instead, we draw attention to their significant limitations and blind spots. Then, second, relevant experts, sketch a number of emerging methods, which can break through these limitations. In particular we discuss five such methods. The first two, stochastic block models and exponential random graph models, provide an inferential basis for network analysis lacking in the exploratory graph analysis methods. The other three addresses: network comparison via persistent homology, time-varying connectivity that distinguishes sample fluctuations from neural fluctuations, and network system identification that draws inferential strength from temporal autocorrelation.

Related Articles

Featured Articles
Learning a Probabilistic Model for Diffeomorphic Registration
We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables... Read more
Featured Articles
Efficient Multiple Organ Localization in CT Image Using 3D Region Proposal Network
Organ localization is an essential preprocessing step for many medical image analysis tasks, such as image registration, organ segmentation, and lesion detection. In this paper, we propose an efficient method for multiple organ localization in CT image using a 3D... Read more
Featured Articles
DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography
The purpose of this study was to develop a CT simulation platform that is: 1) compatible with voxel-based computational phantoms; 2) capable of modeling the geometry and physics of commercial CT scanners; and 3) computationally efficient. Such a simulation platform... Read more