Design optimization

Designing Custom Mechanics in Running-Specific Prosthetic Feet via Shape Optimization

Designing Custom Mechanics in Running-Specific Prosthetic Feet via Shape Optimization

Designing Custom Mechanics in Running-Specific Prosthetic Feet via Shape Optimization 789 444 IEEE Transactions on Biomedical Engineering (TBME)
We employ a custom shape optimization to generate prosthetic running foot geometries given desired endpoint mechanics, and test how three new foot designs affect knee kinetics in an amputee athlete read more

Semi-Automatic Planning and Three-Dimensional Electrospinning of Patient-Specific Grafts for Fontan Surgery

Author(s)3: Xiaolong Liu, Byeol Kim, Yue-Hin Loke, Paige Mass, Olivieri Laura, Narutoshi Hibino, Mark Fuge, Axel Krieger
Semi-Automatic Planning and Three-Dimensional Electrospinning of Patient-Specific Grafts for Fontan Surgery 170 177 IEEE Transactions on Biomedical Engineering (TBME)
This work aims to develop a semi-automatic tissue engineered vascular graft (TEVG) planning method for designing and 3D-printing hemodynamically optimized Fontan TEVGs. We present a computation framework by parameterizing Fontan grafts to explore patient-specific vascular graft design space and search for optimal designs. We employed nonlinear constrained optimization technique to minimize indexed power loss of Fontan grafts while keeping hepatic flow distribution (HFD) and percentage of abnormal wall shear stress (%WSS) within clinically acceptable thresholds. Our work significantly reduces the collaborative effort and turnaround time between clinicians and engineering teams for designing patient-specific hemodynamically optimized TEVGs. read more