The impact of ACL laxity on a bicondylar robotic knee and implications in human joint biomechanics
https://www.embs.org/tbme/wp-content/uploads/sites/19/2020/09/TBME-02212-2019-Highlight-Image.gif
170
177
IEEE Transactions on Biomedical Engineering (TBME)
//www.embs.org/tbme/wp-content/uploads/sites/19/2022/06/ieee-tbme-logo2x.png
A robot model of the human knee provides a new way to investigate joint biomechanics. The specially designed joint has geometry copied from human bones scans and uses springs for ligaments. A knee cap (patella) and tendons transmit forces from an antagonistic pair of actuators, like in the human leg. This method overcomes many of the experimental limitations from using human tissue. The robot demonstrates the unique way in which the sliding of the joint surfaces allows the human knee mechanism to compensate when critical structures such as the anterior cruciate ligaments (ACL) are removed.
read more