Pulse Arrival Time (PAT) derived from Electrocardiogram (ECG) and Photoplethysmogram (PPG) for cuff-less Blood Pressure (BP) measurement has been a contemporary and widely accepted technique. However, the features extracted for it are conventionally from an isolated pulse of ECG and PPG signals. As a result, the estimated BP is intermittent. Objective: This paper presents feature extraction from each beat of ECG and PPG signals to make BP measurements uninterrupted. These features are extracted by employing Haar transformation to adaptively attenuate measurement noise and improve the fiducial point detection precision. Method: the use of only PAT feature as an independent variable leads to an inaccurate estimation of either Systolic Blood Pressure (SBP) or Diastolic Blood Pressure (DBP) or both. We propose the extraction of supplementary features that are highly correlated to physiological parameters. Concurrent data was collected as per the Association for the Advancement of Medical Instrumentation (AAMI) guidelines from 171 human subjects belonging to diverse age groups. An Adaptive Window Wavelet Transformation (AWWT) technique based on Haar wavelet transformation has been introduced to segregate pulses. Further, an algorithm based on log-linear regression analysis is developed to process extracted features from each beat to calculate BP. Results: The mean error of 0.43 and 0.20 mmHg, mean absolute error of 4.6 and 2.3 mmHg, and Standard deviation of 6.13 and 3.06 mmHg is achieved for SBP and DBP respectively. Conclusions: The features extracted are highly precise and evaluated BP values are as per the AAMI standards. Clinical Impact: This continuous real-time BP monitoring technique can be useful in the treatment of hypertensive and potential-hypertensive subjects.