Conventional methods for estimating cardiopulmonary variables usually require complex gas analysers and the active co-operation of the patient. Therefore, they are not compatible with the crowded environment of the Intensive Care Unit (ICU) or operating theatre, where patient co-operation is typically impossible. However, it is these patients that would benefit the most from accurate estimation of cardiopulmonary variables, due to their critical condition.
This paper describes the results of a collaborative development between anaesthesiologists and biomedical engineers to create a compact and non-invasive system for the measurement of cardiopulmonary variables, such as lung volume, airway dead space volume, and pulmonary blood flow. In contrast with conventional methods, the compact apparatus and non-invasive nature of the proposed method allow it to be used in the ICU, as well as in general clinical settings.
We propose the use of a non-invasive method, in which tracer gases are injected into the patient’s inspired breath, and the concentration of the tracer gases is subsequently measured. A novel breath-by-breath tidal ventilation model is then used to estimate the value of a patient’s cardiopulmonary variables. Experimental results from an artificial lung demonstrate minimal error in the estimation of known parameters using the proposed method. Results from analysis of a cohort of 20 healthy volunteers (within the Oxford University Hospitals NHS Trust) show that the values of estimated cardiopulminary variables from these subjects lies within expected ranges. Advantages of this method are that it is non-invasive, compact, portable, and can perform analysis in real-time with less than one minute of acquired respiratory data.
View full article