IEEE Transactions on Biomedical Engineering

Featured Articles
Mechanical Imaging of Soft Tissues with Miniature Climbing robots
We propose a method that uses our previously developed skin-crawling robots to noninvasively test the mechanical properties of soft tissue. We explore the use of two miniature sensors: an indenter and a cutometer. We evaluate the sensor's performance from data collected on simulated tissue, classifying the depth and size of a simulated lump with over 98.8% accuracy using convolutional neural nets. Finally, we do limited on-body testing to map dry skin on the forearm with a cutometer. We hope to improve the ability to test tissues noninvasively, providing better sensitivity and systematic data collection... Read more
Featured Articles
Ultra-high-resolution 3D optical coherence tomography reveals inner structures of human placenta-derived trophoblast organoids
Many pregnancy complications are assumed to have their pathophysiological roots in early stages of placentation. Hence, trophoblast research represents a pre-requisite to help preventing pregnancy disorders that endangers uncomplicated gestations and jeopardizes maternal/fetal wellbeing later in life. Recently established 3D trophoblast organoids (TB-ORG) advanced human placental research. However, gold standard methods for determining TB-ORG architectures lack imaging depth and/or are endpoint analyses. We addressed these problems with 3D optical coherence tomography (OCT). This work demonstrates for the first time that OCT resolves label-free inner structures of TB-ORG during cultivation and enables qualitative/quantitative assessment of their differentiation status without sample destruction... Read more
Sub-Nanowatt Ultrasonic Bio-Telemetry Using B-Scan Imaging
Goal: The objective of this paper is to investigate if the use of a B-scan ultrasound imaging system can reduce the energy requirements, and hence the power-dissipation requirements to support wireless bio-telemetry at an implantable device. Methods: B-scan imaging data were... Read more
Featured Articles
Sol-Gel Based Electrospray Synthesis of Barium Titanate Nanoparticles
Barium titanate nanoparticles are desirable for a wide range of applications, spanning electronics to biomedicine. Here, we present and electrospray-based method for the synthesis of barium titanate nanomaterials, where their morphology can be altered, forming either particles or rods. Aselectrosprayed... Read more
Featured Articles
Shear Waves Reveal Viscoelastic Changes in Skeletal Muscles after Hemispheric Stroke
    We investigated alterations in material properties such as elasticity and viscoelasticity of stroke-affected muscles using ultrasound induced shear waves and mechanical models. We used acoustic radiation force to generate shear waves along fascicles of biceps muscles and measured their propagation... Read more
Articles, Published Articles
Development of a Non-Invasive Blink Reflexometer
       Qualitative assessments of the blink reflex are used clinically to assess neurological status in critical care, operating room, and rehabilitative settings. Despite decades of literature supporting the use of quantitative measurements of the blink reflex in the evaluation of multiple... Read more
Articles, Published Articles
The Role of Affordable, Point-of-Care Technologies for Cancer Care in Low-and Middle-Income Countries: A Review & Commentary
      As the burden of non-communicable diseases such as cancer continues to rise in low- and middle-income countries (LMICs), it is essential to identify and invest in promising solutions for cancer control and treatment. Point-of-care technologies (POCTs) have played critical roles... Read more
Featured Articles
Spatially Coherent Activation Maps for Electrocardiographic Imaging
Electrocardiographic imaging (ECGi) is an emerging non-invasive technique that computes unipolar electrograms (EGMs) at the epicardial surface from high-density body-surface ECG recordings and torso anatomy. Activation mapping is an important post-processing step that allows the user to make sense of these... Read more
Featured Articles
A Biocompatible Near-Infrared 3D Tracking System
A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. To overcome these problems, we developed biocompatible near-infrared fluorescent (NIRF) markers with... Read more
Featured Articles
Kinesin-1 Expressed in Insect Cells Improves Microtubule in Vitro Gliding Performance, Long-Term Stability and Guiding Efficiency in Nanostructures
The cytoskeletal motor protein kinesin-1 has been successfully used for many nanotechnological applications. Most commonly, these applications use a gliding assay geometry where substrate-attached motor proteins propel microtubules along the surface. So far, this assay has only been shown to... Read more